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Abstract

We show how the ARMA-Power GARCH model for the conditional mean and variance

can be adapted to analyze times series data showing asymmetry. Dynamics is introduced in

the location and the dispersion parameters of skewed location-scale distributions using the

same type of structure found in the conditional mean and in the conditional variance in the

ARMA-APARCH model. We also propose a general dynamic model for skewness as measured

by the odds ratio of having the next observation greater than the conditional mode. This

general tool is illustrated by the analysis of the DEM-USD exchange rate over the 1980-1996

period.
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1 Introduction

It has been recognized for a long time that the dynamic behavior of economic variables is difficult

to understand. And this difficulty certainly increases with the observation frequency of the data.

Assuming that only the mean response could be changing with covariates while the variance

remains constant over time often revealed to be an unrealistic assumption in practice. This fact is

particularly obvious in series of financial data where clusters of volatility can be detected visually.

In this respect, the increased importance played by risk and uncertainty considerations in

modern economic theory has called for the development of new econometric time series techniques

that allow for the modelling of time varying means, variances and covariances. Given the apparent

lack of any structural dynamic economic theory explaining the variation in the second moment,

econometricians have thus extended traditional time series tools such as Autoregressive Moving

Average (ARMA) models (Box and Jenkins, 1970) for the mean to essentially equivalent models

for the variance. Indeed, the dynamics observed in the dispersion is clearly the dominating feature

in the data. Autoregressive Conditional Heteroscedasticity (ARCH) models (Engle, 1982) are now

commonly used to describe and forecast changes in volatility of financial time series.

ARCH models are typically estimated by maximizing the associated log-likelihood function

or a quasi-log-likelihood function (see Gourieroux, 1997 for a review of alternative estimation

procedures of ARCH models). Consequently, one has to make an additional assumption about

the innovation process. It is usual to rely on a conditional Gaussian log-likelihood since the

Gaussian Quasi Maximum Likelihood (QML) method can provide consistent estimates in the

general framework of a dynamic model under correct specification of both the conditional mean

and the conditional variance (see Weiss, 1986 and Bollerslev and Wooldridge, 1992 among others).

However, another striking characteristic of high-frequency financial returns is that they are

often fat-tailed. For instance, Hong (1988) rejected the conditional normality claiming abnormally

high kurtosis in the daily New York Stock Exchange stock returns. In fact, the kurtosis of most

asset returns is higher than three, which means that extreme values are observed more frequently

that for the normal distribution. While the high kurtosis of the returns is a well-established

fact, the situation is much more obscure with regard to the symmetry of the distribution. Many

authors do not observe anything special on this point, but other researchers (for instance Simkowitz

and Beedles, 1980; Kon, 1984 and So, 1987) have drawn the attention to the asymmetry of

the distribution in the sense that the unconditional mean and the unconditional mode do not

coincide. When the mean is at the right (resp. left) of the mode, the series is said to be right

(resp. left) skewed. For instance, French, Schwert, and Stambaugh (1987) found conditional

skewness significantly different from 0 in the standardized residuals when an ARCH-type model

was fitted to the daily SP500 returns. More recently, Mittnik and Paolella (2000) have shown that
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an asymmetric and fat-tailed distribution is required for modelling several daily exchange rate

returns of East Asian currencies against the US dollar.

Basically, searching for a more realistic assumption for the innovation process has two sources

of motivation. The first raison d’être, is to have more efficient estimates (which is of prime

importance for statistical inference). Indeed although consistent, the Gaussian QML estimator

is inefficient for non-normally distributed data, with the degree of inefficiency increasing with

the degree of departure from normality (Engle and González-Rivera, 1991). This leaves the door

open for other distribution functions and/or other estimation techniques. Second, accounting for

asymmetry and fat-tails is relevant for financial applications.

While it might be agreed that it is desirable to allow the conditional density to be non-normal,

it is not clear how to achieve this goal.

In order to accommodate the excess of (unconditional-) kurtosis, GARCH models have been

first combined with Student distributed errors by Bollerslev (1987). Indeed, although GARCH

models generate fat-tails in the unconditional distribution, when combined with a Gaussian con-

ditional density, they do not fully account for the excess kurtosis present in many return series.

The Student density is now very popular in the literature due to its simplicity and because it

often outperforms the Gaussian density. However, the main drawback of this density is that it is

symmetrical while financial time series can be skewed. To create asymmetric unconditional densi-

ties, GARCH models have been extended to include a leverage effect. For instance, the threshold

ARCH (TARCH) model of Zakoian (1994), the exponential GARCH (EGARCH) of Nelson (1991)

or the asymmetric power ARCH (APARCH) of Ding, Granger, and Engle (1993) allow past neg-

ative (resp. positive) shocks to have a deeper impact on current conditional volatility than past

positive (resp. negative) shocks (see among others Black, 1976; French, Schwert, and Stambaugh,

1987; Pagan and Schwert, 1990). Combined with a Student distribution for the errors, this model

is in general flexible enough to mimic the observed kurtosis of many stock returns but often fails

in replicating the asymmetry of these series.

To account for both excess skewness and excess kurtosis, mixtures of normal or Student den-

sities can be used in combination with a GARCH model. In general, it has been found that

these densities cannot capture all the skewness and leptokurtosis (Ball and Roma, 1993; Beine

and Laurent, 1999; Jorion, 1988; Neely, 1999; Vlaar and Palm, 1993), although they seem ade-

quate in some cases. McCulloch (1985), Liu and Brorsen (1995), Mittnik, Paolella, and Rachev

(1998) consider the asymmetric stable density in combination with a GARCH model. A major

drawback of the stable density is that, except when the tail parameter α = 2 (i.e. normality), the

variance does not exist, a fact usually not supported empirically (see Pagan, 1996). Lee and Tse

(1991), Knight, Satchell, and Tran (1995) and Harvey and Siddique (1999a)1 propose alternative

1This list is by no means exhaustive.
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skewed fat-tailed densities, with respectively the Gram-Charlier Expansion, the Double-Gamma

distribution and the non-central t. However, as pointed out by Bond (2000) in a recent survey on

asymmetric conditional density functions, estimation of these densities in a GARCH framework

often proved troublesome and highly sensitive to initial values. McDonald (1984) and McDon-

ald (1991) introduce the exponential generalized beta distribution of the second kind (EGB2), a

flexible distribution that is able to accommodate not only thick tails but also asymmetry. The use-

fulness of this density has been proved recently by Wang, Fawson, Barrett, and McDonald (2001)

in a GARCH framework. These authors show that a more flexible density than the normal and

the Student is required in the modelling of six daily nominal exchange rate returns vis-a-vis the

US dollar. However, goodness-of-fit tests clearly reject the EGB2 distribution for all the currencies

that they consider, even if it seems that it outperforms the normal and the Student.

Interestingly, Hansen (1994) proposes a skewed Student distribution that nests the symmetric

Student when the asymmetry coefficient (λ) equals 0, with −1 < λ < 1. This density is quite easy

to implement and its estimation does not face serious problems of convergence. However, Hansen

(1994) does not discuss the relation between λ and higher moments. Recently, Jones and Faddy

(2000) have designed another skew-t distribution. This density has two parameters (assuming zero

location and unit scale parameters), say a and b. If a = b, the distribution is the usual symmetrical

Student one, with number of degrees of freedom υ = 2b (assuming b > 1). If a − b > 0 (< 0),

the density is skewed to the right (left): hence a − b reflects the skewness feature of the density.

A property of this skew-t density is that its long tail is thicker than its short tail (if a > b, the

left tail behaves like z−(2a+1) at minus infinity, the long tail like z−(2b+1) at plus infinity). Jones

and Faddy (2000) also provide the moments and the cumulative density function of their skew-t

density.

Recently, (in a context different from the volatility literature) Fernández and Steel (1998)

developed a more general tool (based on the method of inverse scaling of the probability density

function on the left and the right of the mode) which has the advantages of simplicity and that all

the parameters have a clear interpretation. Moreover, contrary to Hansen (1994), Fernández and

Steel (1998) discuss the relation between the asymmetry coefficient and the first three moments.

However, the main drawback of this density is that it is not expressed in terms of the mean and

the variance but in terms of the mode and a measure of the dispersion.

In this paper, we consider possibly skewed and heavy-tailed distributions for the response.

Traditional times series models are reformulated as dynamic models for the mean and the variance.

The common structure of ARMA and GARCH models are then clearly visible in the conditional

mean and the conditional variance. These structures are adapted to model the location and

the dispersion parameters of four parameter distributions. We shall consider the family of skewed

location-scale distributions that include the skewed Student and the skewed stable as special cases.
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The skewness and the tails properties will first be considered time invariant. Dynamics will then

be introduced to allow skewness to change over time in a totally different way than Hansen (1994)

who conditions the 3rd order moment on past residuals and their square. Our proposal has the

major advantage that the conditional skewness parameter has a clear interpretation as the odds

ratio of having the next observation above the mode. This allows sensible choices for the quantities

on which one conditions to predict future skewness.

The paper is organized as follows. Section 2 briefly introduces the investigated family of

distributions. Section 3 presents the modelling framework of the location and dispersion equations

while Section 4 describes the maximum likelihood estimation procedure. A general dynamic model

for skewness is proposed in Section 5. An empirical application on daily exchange rate returns

compares the performance of the different distributions in Section 6. We conclude the paper by a

discussion in Section 7.

2 Alternative distributions

2.1 The t-distribution

To accommodate the excess of (unconditional) kurtosis, GARCH models have been first combined

with Student distributed errors by (Bollerslev 1987). Indeed, although a GARCH model generates

fat-tails in the unconditional distribution, when combined with a Gaussian conditional density, it

does not fully account for the excess kurtosis present in many return series. The Student density

is now very popular in the literature due to its simplicity and because it often outperforms the

Gaussian density. As a reminder, a random variable Y is distributed as a Student(µ, σ2, υ) if the

density can be written

gυ(y|µ, σ2) =
Γ(υ+1

2 )√
π(υ − 2) Γ(υ

2 )
1

{
1 + 1

υ−2

(
y−µ

σ

)2
} υ+1

2

1
σ

(1)

where µ, σ2 > 0 and υ ∈ IN \ [0, 2] are respectively the mean, the variance and the degrees of

freedom. As υ tends to infinity, the Student tends in distribution to the normal. The t-distribution

can be extended by allowing the degree of freedom to take real values in (2,∞[. The thickness of

the tails is decreasing with υ. An alternative parameterization allows υ to be less than 2. In these

cases, the variance is infinite and σ2, which is not the variance anymore, remains a dispersion

parameter.

2.2 The skewed t-distribution

However, the main drawback of the Student density is that it is symmetrical while financial time

series can be skewed. Fernández and Steel (1998) proposed an extension of the Student distribution
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by adding a skewness parameter. Their procedure allows the introduction of skewness in any

continuous unimodal and symmetric (about γ) distribution g(y; γ) by changing the scale at each

side of the mode. More specifically,

f(y|γ, ξ) =
2

ξ + 1
ξ

{
g(ξ(y − γ); 0)I(−∞,γ)(y) + g((y − γ)/ξ; 0)I[γ,∞)(y)

}
(2)

is a unimodal density with the same mode as g(y; γ) and a skewness parameter ξ > 0 such that

the ratio of probability masses above and below the mode is

Pr(Y ≥ γ|ξ)
Pr(Y < γ|ξ) = ξ2 (3)

Note that the density f(y|γ, 1/ξ) is the symmetric of f(y|γ, ξ) with respect to the mode. Therefore,

working with ξ′ = log(ξ) might be preferable to indicate the sign of the skewness. If we take

for g(y; γ) the Student density gυ(y|µ = γ, σ2) in Equation (1), we obtain the four parameter

skewed Student distribution in Fernández and Steel (1998). These parameters all have a clear

interpretation:

• µ, as the mode, models the location,

• σ2 > 0 (which is not the variance anymore) models the dispersion,

• ξ > 0 models the skewness,

• υ > 0 models the tail thickness.

Four important aspects of the distribution can thus be independently specified. The skewed

normal distribution directly obtained by applying Equation (2) to the symmetric normal density

with mean γ and variance σ2 is a limiting case (υ →∞) of the skewed Student with the same tail

properties than the traditional normal.

2.3 The asymmetric stable distribution

Stable distributions are by definition the only possible limiting distributions for the sum of in-

dependent, identically distributed random variables (see for example, Samorodnitsky and Taqqu,

1994; Adler, Feldman, and Taqqu, 1998; Lambert and Lindsey, 1999). Therefore these limiting

distributions generalize the normal that arises in the central limit theorems when the variance

of the summed random variables is finite. Unfortunately, these four parameter distributions are

only known through their characteristic function φ(t). A possible parameterization of the latter

is given by

log φ(t) = iγt− |t|αδα exp
[−iβ π

2 ηα sign(t)
]

(4)

ηα = min(α, 2− α) = 1− |1− α|
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where γ, δ > 0, β ∈ [−1, 1] and α ∈ (1, 2] are location, dispersion, skewness and tail parameters.

The cases α = 1, α = 2 and (β, α) = (1, 0.5) respectively correspond to the Cauchy, the normal

and Lévy distributions. For other parameter values, the density gα(y|γ, δ, β) can only be obtained

using numerical approximations (see Part VII in Adler, Feldman, and Taqqu, 1998 ; Lambert and

Lindsey, 1999 ; Hoffmann-Jørgensen , 1994, I, pp. 406–411). The density is unimodal Yamazato

(1978) and bell-shaped Gawronski (1984). It is symmetric when β = 0 and right (left) skewed

when β is negative (positive). Stable distributions (α 6= 2) are said heavy tailed because the

distribution and survivor functions show a power decay

Gα(x) ∝ (−x)−α as x → −∞
Gα(x) = 1−Gα(x) ∝ x−α as x → +∞ (5)

as in the Pareto case. This can be contrasted to the normal distribution (α = 2) where an

exponential decay is observed

Gα=2(x) ∝ exp(−x2/2)
x

One important aspect of stable distributions is that the four parameters can be specified in an

independent manner (the space parameter is simply the cartesian product of the four parameter

spaces). This is a remarkable result for statisticians used to the exponential family where the

specification of the mean often affects in an important manner other aspects of the shape of the

considered distribution. However, the range of possible skewness introduced by β in the stable

distribution highly depends on the value of the tail parameter α as illustrated in Figure 1. If we

measure skewness by the log of the ratio ξ2 of probability masses above and below the mode as

given in Equation (3), we see that the asymmetry introduced by non-zero values of β becomes

negligible as α approaches 2. It presents at least two drawbacks:

• the analyst might think, for example, that the data present severe skewness because the

estimated value of β is close to −1 or 1. However, the last figure shows that he might be

completely wrong if the fitted stable distribution is characterized by an α parameter close

to 2. A re-parameterization of the stable distribution is thus desirable to reflect reliably

the skewness introduced by the skewness parameter. This parameter would obviously be a

function of β and α.

• the analyzed dataset might present (severe) skewness and have heavy tails (cf. Equation (5))

with an α close to 2. The stable family of distributions cannot adequately describe such a

phenomenon.
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2.4 The skewed stable distribution

The skewed stable distribution is an alternative to the traditional (asymmetric) stable distribution

to model heavy tailed processes. The two drawbacks mentioned above about the stable disappear

in this new four parameter family of distributions. Moreover, each of the four parameters involved

describe in an unambiguous way four fundamental aspects of the underlying unimodal densities. If

gα(y|γ, δ, β = 0) denotes the density of the symmetric unimodal stable distribution (with a mode

at γ) obtained by inverting the characteristic function in Equation (4), the density of the skewed

stable distribution is defined as

fα(y|γ, δ, ξ) =
2

ξ + 1
ξ

{
gα(ξ(y − γ)|0, δ, β = 0)I(−∞,γ)(y) + gα((y − γ)/ξ|0, δ, β = 0)I[γ,+∞)(y)

}

(6)

following the general method described by Fernández and Steel (1998). The four parameters in

that distribution now have an unambiguous interpretation:

• γ is the mode,

• δ is the dispersion parameter,

• ξ2 is the skewness parameter giving the ratio of probability masses above and below the

mode,

• α is the tail parameter such that (when α 6= 2)

Fα(y|γ, δ, ξ) ∝ (−y)−α as y → −∞
Fα(y|γ, δ, ξ) ∝ y−α as y → +∞

The location parameter γ, as the mode, is easier to interpret than the location measure considered

in the usual stable distribution. The amount of skewness corresponding to a given value of ξ is

the same whatever the value of the tail parameter α. Moreover, skewness of any size can now be

introduced in the distribution through the parameter ξ. Finally, for large values of |y|, the stable

and the skewed stable distributions show the same Paretian behavior in the tails.

2.5 Skewed location-scale distributions

Consider the following class of densities

f(y|γ, δ, ξ) =
2

ξ + 1
ξ

{
g(ξ(y − γ)|0, δ)I(−∞,γ)(y) + g((y − γ)/ξ|0, δ)I[γ,+∞)(y)

}
(7)

with

g(y|γ, δ) =
1
δ

h

(
y − γ

δ

)
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where h(·) is a unimodal and symmetric density about 0 with existing first and second derivatives

at 0. Thus, f(y|γ, δ, ξ) is the skewed version of a location-scale density g(y|γ, δ) unimodal and

symmetric about γ with

• mode γ,

• skewness parameter such that ξ2 is the ratio of probabilities above and below the mode,

• a dispersion parameter δ2 measuring the inverse of the curvature of the density at the mode.

Indeed, we have




(
−∂2 log f(y|γ,δ,ξ)

∂Ly2

)−1

|y=γ
= h(0)

−h′′(0)
1
ξ2 δ2

(
−∂2 log f(y|γ,δ,ξ)

∂Ry2

)−1

|y=γ
= h(0)

−h′′(0) ξ2δ2

(8)

as inverse curvature measure on, respectively, the left and the right of the mode γ (with

∂/∂L and ∂/∂R denoting respectively left and right derivatives).

We shall write

Y ∼ SLS(h, γ, δ, ξ)

to denote that Y has a skewed location-scale (SLS) distribution with generating density h(·).
Special cases

1. Normal distribution: we have

h(x) =
1√
2π

exp(−0.5 x2)

Note that, as
h(0)

−h′′(0)
= 1 ,

Equation (8) just yields δ2 for the inverse curvature measure.

2. Skewed Student distribution: we have seen that

h(x) = hυ(x) =
Γ(υ+1

2 )√
π(υ − 2) Γ(υ

2 )
1

(
1 + 1

υ−2 x2
) υ+1

2

Note that, as
h(0)

−h′′(0)
=

υ − 2
υ + 1

,

Equation (8) just yields υ−2
υ+1δ2 for the inverse curvature measure when ξ2 = 1.

3. Skewed stable distribution: the generating density is

h(x) = hα(x) = gα(x|γ = 0, δ = 1, β = 0)

obtained by inverting the characteristic function in Equation (4). Equation (8) just yields
hα(0)
−h′′α(0)δ

2 for the inverse curvature measure when ξ2 = 1.
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2.6 Distribution and quantile functions of a skewed distribution

Assume that f(y|γ, δ, ξ) is a density skewed using the technique proposed by Fernández and Steel

(1998) in Equation (2) applied on a continuous and symmetric location-scale density g(y|γ, δ) with

location and dispersion parameters γ and δ. We can relate the distribution function (cdf) F and

the quantile function F−1 to the starting cdf G and quantile function G−1. We have

F (y|γ, δ, ξ) =





2
1+ξ2 G(ξ(y − γ)|0, δ) if y < γ

1− 2
1+ξ−2 G(−ξ−1(y − γ)|0, δ) if y ≥ γ

for the cdf and

F−1(p|γ, δ, ξ) =





1
ξ G−1

(
p
2 (1 + ξ2)|γ, δ

)
if p < 1

1+ξ2

−ξG−1
(

1−p
2 (1 + ξ−2)|γ, δ

)
if p ≥ 1

1+ξ2

for the quantile function.

3 Reformulation of time series models

3.1 The ARMA(p1, q1) model

Efficient tools have been developed to model long sequences of data or time series. The ARMA

model of Box and Jenkins (1970) is available in most generalist statistical packages to model the

serial dependence arising in sequences of data. More specifically, if {y1, . . . , yn} is a sequence of

observations indexed by the (discrete) time t and L the lag operator, then an ARMA(p1, q1) model

is given by

Yt = φ11(Yt−1 − ψ1t−1) + . . . + φ1p1(Yt−p1 − ψ1t−p1) + εt + θ11εt−1 + . . . + θ1q1εt−q1 (9)

or equivalently by

Φ1(L)(Yt − ψ1t) = Θ1(L)εt (10)

Φ1(L) = 1−∑p1
i=1 φ1iL

i ; Θ1(L) = 1 +
∑q1

j=1 θ1jL
j

where

• the roots of the polynomials Φ1(L) and Θ1(L) are supposed to lie outside the unit circle,

• the {εt} is i.i.d.(0, σ2).

• ψ1t is the unconditional mean of Yt which could change with (possibly) time varying (exoge-

nous) covariates {xt} if desired.
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The “epsilon” notation in Equation (10) is interesting because it allows to derive the properties of

the Yt’s (such as its unconditional moments) in an easy way. Moreover, expressing Yt (or εt) as a

function of its previous states and of past values of the ε’s (Yt’s) can easily be done by inverting the

Φ1(L) (Θ1(L)) polynomials in Equation (10). However, the ε notation hides a complex structure

in the underlying conditional first moment where the hypotheses and the dynamics introduced

by the ARMA model can be better understood. After some straightforward manipulations of

Equation (10), we get, for the conditional mean µt,

µt = ψ1t +
p1∑

i=1

φ1i(yt−i − ψ1,t−i) +
q1∑

j=1

θ1j(yt−j − µt−j) (11)

with

et = yt − µt

as observed value for εt. The conditional mean is thus divided into three contributions:

1. a covariate part ψ1t as in traditional regression model which is also the unconditional mean

of Yt,

2. the AR(p1) part, that corrects the regression model using its past deficiencies as measured by

the previous p1 residuals, i.e. the differences between past observations and their respective

unconditional mean,

3. the MA(q1) part that corrects the regression and AR(p1) models with their q1 past errors.

3.2 The GARCH(p2, q2) model

The above ARMA model assumes that the conditional variance of Yt, which is also the variance

of εt, is constant and equal to σ2. As the mean of εt is zero, this is simply E(ε2t ). The general-

ized autoregressive conditionally heteroskedastic model , i.e. GARCH(p,q), defined by Bollerslev

(1986), allows the conditional variance of εt to change over time as specified by:

σ2
t = E(ε2t |Ft−1) = ω +

q∑

i=1

αie
2
t−i +

p∑

j=1

βjσ
2
t−j (12)

with ω > 0, αi ≥ 0, βj ≥ 0, where e2
t = (yt − µt)2 is (say) the squared residual from the ARMA

model for the mean. We propose the following alternative definition

σ2
t = ψ2t +

p2∑

i=1

φ2i(e2
t−i − ψ2,t−i) +

q2∑

j=1

θ2j(e2
t−j − σ2

t−j) (13)

for the conditional variance, where ψ2t is the unconditional variance which could be changing

with (possibly) time varying covariates. It is closely related to the expression that Chung (1999)
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considered in the FIGARCH framework. Note that there is a one to one relation between (12)

and (13). Indeed,

ω = ψ2t(1−
p2∑

i=1

φ2iL), αi = φ2i + θ2j , βj = −θ2i, p = q2, q = max[p2, q2],

φ2i = 0 for i > p2 and θ2j = 0 for j > q2

Translating the positivity constraints of (12) for (13) leads to

ψ2t > 0, φ2i + θ2j ≥ 0, φ2i ≤ 0

Equation (13) shares the same structure as the conditional mean in the ARMA model of Section

3.1. Using the same arguments, one can show that {ε2t − ψ2
2t} is first-order stationary when the

roots of

Φ2(L) = 1−
p2∑

i=1

φ2iL
i

all lie outside the unit circle. As Equation (13) can be rewritten as

(σ2
t − ψ2t) =

p2∑

i=1

φ2i(e2
t−i − ψ2,t−i) +

q2∑

j=1

θ2j [(e2
t−j − ψ2,t−j)− (σ2

t−j − ψ2,t−j)],

the mean m of (ε2t − ψ2t) at stationarity must check

m =
p2∑

i=1

φ2im +
q2∑

j=1

θ2j [m−m]

Thus, using the stationarity condition, it requires m to be zero and hence

E(ε2t ) = ψ2t

In particular, when

ψ2t = ψ2 ∀ t,

the variance of εt at stationarity is ψ2. This is the main motivation for the above proposed alterna-

tive definition of the GARCH. In the rest of the paper, we shall speak about an ARMA-GARCH

model when the location and the dispersion parameters of the considered response conditional

distribution can be expressed as in Equations (11) and (13).

3.3 The APARCH(p2, q2) model

The GARCH(p,q) model has been extended in various ways. One of the most interesting devel-

opments is the asymmetric power (G)ARCH or APARCH(p,q) model (Ding, Granger, and Engle

1993) which allows to take account of both the conditional asymmetry and (possible) long memory
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property empirically described in stock market volatility. This long memory is introduced by a

GARCH like model for σζ
t instead of the conditional variance σ2

t :

σζ
t = ω +

q∑

i=1

αik(et−i)ζ +
p∑

j=1

βjσ
ζ
t−j

where

σζ
t = E(εζ

t |Ft−1) ; et = yt − µt

k(et−i) = |et−i| − τiet−i

ω > 0, αi ≥ 0, βj ≥ 0, ζ > 0,−1 < τi < 1

This specification has been motivated by a stylized fact detected by Taylor (1986) who first ob-

served that the absolute returns (|yt|) in financial time series are positively autocorrelated, even

at long lags. Ding, Granger, and Engle (1993) found that that the closer ζ to 1, the larger the

memory of the process.2 The extra set of τi parameters allows a different effect of a positive and

a negative shock on volatility. More details can be found in the above mentioned reference. The

properties of the APARCH model has been studied recently by He and Teräsvirta (1999a, 1999b).

It is interesting to know that the APARCH model includes at least six other proposed alternatives

to the GARCH model as special cases. As in the previous section and to keep the same structure

as Equations (11) and (13), we propose an alternative specification of the APARCH(p2, q2):

σζ
t = ψ2t +

p2∑

i=1

φ2i

{
k(et−i)ζ − ψ2,t−i

}
+

q2∑

j=1

θ2j

{
k(et−j)ζ − σζ

t−j

}
(14)

For equity returns and interest rates, it is particularly unlikely that positive and negative shocks

have the same impact on volatility (see Black, 1976; Glosten, Jagannathan, and Runkle, 1993;

Nelson, 1991; Engle, Ng, and Rothschild, 1990 among others). In general, with exchange rate

returns (like in Section 6), assuming τi = 0 ∀i is empirically supported.3

4 Time series models and skewed distributions

The objective is now to adapt ARMA-GARCH and ARMA-APARCH models to describe dynamics

in skewed location-scale distributions. In the skewed Student (say) distribution, when the skewness

parameter ξ differs from one, µ and σ2 are not the mean and the variance anymore, but the mode

and a dispersion parameter. Therefore, dynamics cannot be properly introduced in the skewed

Student distribution by specifying dynamics in µ and σ2 using Equations (11) and (13). The same
2Tse (1998) extended the APARCH by including a pure long memory feature (FIAPARCH). Even if such an

extension is straightforward, little is known about the properties of such a model. This is the reason why we do

not tackle this specification in this paper.
3Results, not reported here, highly support this assumption.
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type of problems arise with the skewed stable distribution as the mean is possibly non finite (when

α ≤ 1) and the variance infinite (except when α = 2).

4.1 Parameter estimation

When the chosen distribution for the innovation is the traditional normal, estimating the parame-

ters appearing in an ARMA-GARCH structure is straightforward. One way to tackle the problem

is to assume that the responses

(Yt|Ft−1) ∼ N(µt, σ
2
t )

are conditionally independent with the first two conditional moments given by Equations (11) and

(13). The parameters in the ARMA-GARCH model can then be estimated by maximizing (apart

from initial conditions) the corresponding likelihood

L =
n∏

t=1

f(yt|µt, σ
2
t )

where f(·) is the normal density. The technique is similar when the Student distribution is

considered. Using the same equations for the first two conditional moments, we get as likelihood

L =
n∏

t=1

fυ(yt|µt, σ
2
t ) (15)

where the density fυ(·) is given by Equation (1).

4.2 Time series models with skewed location-scale densities

We assume that the distribution of the response Yt conditional on the history Ft−1 of the process

is such that

(Yt|Ft−1) ∼ SLS(h, γt, δt, ξt)

with conditional parameters γt, δt and ξt.

4.2.1 ARMA model

Let us assume that both the dispersion and the skewness parameters are constant, i.e.

δt = δ ; ξt = ξ

We would like to propose a specification of the same type as the ARMA model of Equation (11)

relating the conditional mode (instead of the possibly non existing mean) to the history of the

process. In Equation (11), we see that past observed residuals

ej = yj − µj (j < t)
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are used to measure prediction errors before time t. The choice of this error measure is motivated

by

E(εt−j = Yt−j − µt−j |Ft−j−1) = 0

provided that our conditional distribution (which is the predicting distribution) is indeed gov-

erning the observed process. Measuring a prediction error by comparing the observed yj to the

(predictive) conditional mean µj is of course arbitrary. It would be equally reasonable to predict

Yj using the conditional mode γj of the conditional distribution. This is precisely what we propose

here. Therefore, we propose an ARMA model for the conditional mode γt

γt = ψ1t +
p1∑

i=1

φ1i(yt−i − ψ1,t−i) +
q1∑

j=1

θ1j(yt−j − γt−j) (16)

with the usual restrictions on the roots of the corresponding Φ1(L) and Θ1(L) polynomials. This

is equivalent to assuming that

Φ1(L)(Yt − ψ1t) = Θ1(L)εt (17)

where {εt} is i.i.d. with SLS(h, 0, δ, ξ) distribution. Note that starting by assuming that Yt is

governed by Equation (17) is equally arbitrary to assuming directly that

(Yt|Ft−1) ∼ SLS(h, γt, δ, ξ)

with γt defined by Equation (16). Consider for simplicity an ARMA(p1, q1) for the conditional

mode. We could say that the process {Yt − ψ1t} is asymptotically mode stationary when the

sequence

Mode(Yt − ψ1t)

converges to a m that does not depend on t. If such a m exists, it is the solution of

m =
p1∑

i=1

φ1im +
q1∑

j=1

θ1j [m−m]

as obtained by applying the Mode(·) operator to the ARMA(p1, q1) equation

(γt − ψ1t) =
p1∑

i=1

φ1i(yt−i − ψ1,t−i) +
q1∑

j=1

θ1j [(yt−j − ψ1,t−j)− (γt−j − ψ1,t−j)]

As we have
p1∑

i=1

φ1i < 1, 4

from the unit root condition on Φ1(L), it requires m to be zero. Hence

Mode(Yt) = ψ1t

4This is the only required condition to have asymptotical mode stationarity.
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We could reverse the above motivating argument for defining the residual from the mode and

wonder to what function x(yj) we should confront γj to measure (using a single number) the

adequacy of the location of the conditional distribution. The “ideal” choice for γj could be defined

to be the value x that maximizes the conditional probability to measure yj for the process, which

is equivalent to finding the value of x that maximizes the density f(yj |x, δj , ξj) in Equation (7).

This yields

x(yj) = yj

Therefore, our prediction error at time j could be defined as

x(yj)− γj = yj − γj

i.e. the difference between the “ideal” γj and its actually considered value. Note that Equation

(16) can be used in particular with the skewed Student and the skewed stable distributions to

define the conditional mode.

4.2.2 APARCH model

We would like to define the conditional dispersion parameter δt (measuring the inverse curvature

of the conditional density at the mode) using a formula similar to the definition of the APARCH

conditional variance of Equation (14), assuming τi = 0 ∀i for simplicity. If we substitute δj to

σj in that equation, by what function d(yj) should we replace the absolute (conditional) residual

|ej | = |yj − µj | ? Using the same argumentation as in the previous section, we want to know

to what function d(yj) we should confront δj to measure (using a single number) the adequacy

of the dispersion of the conditional distribution. The “ideal” choice for δj could be defined to

be the value d that maximizes the conditional probability to measure yj for the process, which

is equivalent to finding the value of d that maximizes the density f(yj |γj , d, ξj) in Equation (7).

Solving
∂f(yj |γj , d, ξj)

∂d
= 0

for d, we get

dj = d(yj) =





|yj−γj |
z0ξ−1

j

if yj < γj

|yj−γj |
z0ξj

if yj ≥ γj

where z0 = z0(h) is the solution of

−h′(z)
h(z)

=
1
z

This suggests the following APARCH model for the conditional dispersion parameter δt

δζ
t = ψ2t +

p2∑

i=1

φ2i

{|dt−i|ζ − ψ2,t−i

}
+

q2∑

j=1

θ2j

{
|dt−j |ζ − δζ

t−j

}
(18)

Special cases
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1. Normal ARMA-APARCH: we have

h(z) =
1√
2π

exp(−0.5 z2)

Thus, z0 is the solution of

−h′(z)
h(z)

=
1
z
⇐⇒ z =

1
z

and

|dt|ζ = |yj − γj |ζ .

Notice that if ζ = 2, as in the usual GARCH specification, we recover the squared residual.

2. Skewed Student ARMA-APARCH: we have seen that

h(z) = hυ(z) =
Γ(υ+1

2 )√
π(υ − 2) Γ(υ

2 )
1

(
1 + 1

υ−2 z2
) υ+1

2

Thus, z0 is the solution of

−h′(z)
h(z)

=
1
z
⇐⇒ (υ + 1)z

(υ − 2) + z2
=

1
z
⇐⇒ z2 =

υ − 2
υ

Hence, we have

|dt|ζ =





(
υ

υ−2
|yj−γj |

ξ−1
j

)ζ

if yj < γj

(
υ

υ−2
|yj−γj |

ξj

)ζ

if yj ≥ γj

Note that when we have symmetry (ξj = 1), we only recover the ζth power absolute residual

when the degrees of freedom υ → +∞, i.e. in the normal case.

3. Skewed stable ARMA-APARCH: consider for h(z) the density of the symmetric stable dis-

tribution with γ = 0, δ = 1, β = 0 and arbitrary α. The main problem with the stable

distribution is the non availability of an analytic form for its density, except in special cases.

Hence, except for particular values of (β, α), we must solve numerically

−h′(z)
h(z)

=
1
z

for z to determine z0 = z0(h). The value of z0 for varying values of α is given on Figure 2,

completing the definition of the ζth power absolute residual

|dj |ζ =





(
|yj−γj |
z0ξ−1

j

)ζ

if yj < γj

(
|yj−γj |

z0ξj

)ζ

if yj ≥ γj

It can be used with Equation (18) to define the dispersion of the response conditional distri-

bution. Further imposing ζ to be less than α is required to have finite expectation for |dj |ζ .
Note that when α = 2 and ξ = 1, we recover, for the skewed stable, the normal distribution

with variance σ2 = 2δ2. Thus, the obtained z2
0 = 2 (see Figure 2) is consistent with the first

special case.

17



5 Skewness dynamics in skewed distributions

The models presented up till now assume that the skewness parameter remains constant over time.

This hypothesis might not be reasonable in some situations and alternative models allowing this

characteristic of the response distribution to change with time should be available. Hansen (1994)

proposes to condition the skewness (and the kurtosis) on past residuals and squared residuals. The

same idea has been used by Harvey and Siddique (1999b)5 and Jondeau and Rockinger (2000)6.

Here, we show how dynamics can be introduced in the skewness parameter (defined as the odds

ratio of having an observation above the mode) using time varying covariates and ARMA like

models.

5.1 Basic dynamic model

The starting point is Equation (3) for an arbitrary conditional mode γt. Denoting by πt the

probability to observe for the response at time t a larger value than the conditional mode γt, we

have

log(ξ2
t ) = logit(πt)

If the skewness is assumed constant, then a reasonable estimator for the (logarithm of the) condi-

tional skewness parameter is:7

log(ξ̂2
t ) = logit

(
n>

t−1

n>
t−1 + n<

t−1

)
= log

(
n>

t−1

n<
t−1

)

where ξ2
t is the conditional odds to have observation at time t above the mode, n>

t−1 and n<
t−1

denote respectively the number of times an observation has been observed above and below the

corresponding (predictive) conditional mode up to and including time t− 1, i.e.

n>
t = n>

t−1 + I(yt > γt)

n<
t = n<

t−1 + I(yt < γt)
(t ≥ 1) (19)

with (say)

n>
0 = n<

0 = 1

5Harvey and Siddique (1999b) use a noncentral-t distribution, scaled to have a unit variance and condition

the third moment on past residuals to the power one and three. These authors also investigate the existence of

coskewness using a bivariate GARCH on daily and monthly stock indexes.
6Jondeau and Rockinger (2000) express skewness and kurtosis of Hansen’s GARCH model as a function of the

underlying parameters. The cost of such a flexibility is that for a dataset of about 7,000 observations, they have

to impose not less that 20,000 restrictions. This difficult estimation problem is solved using a recent sophisticated

sequential quadratic optimization algorithm.
7Working with log(ξ̂2

t ) instead of ξ̂2
t avoids to worry about the positiveness of ξ̂2

t .
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to start the recursion and I(yt > γt) (resp. I(yt < γt)) being one when yt > γt (resp. yt < γt)

and 0 otherwise. Note that an observation larger than the mode at some time t1 contributes in

the same way to n>
t than an observation above the mode at time t2 with t1 < t2 < t. Thus

the information brought by an observation on skewness does not get older with time. This is the

translation of the constant skewness hypothesis made above. This hypothesis can be relaxed and

the skewness allowed to change with time by generalizing Equation (19) to

n>
t (ρ) = ρ n>

t−1(ρ) + I(yt > γt)

n<
t (ρ) = ρ n<

t−1(ρ) + I(yt < γt)
(t ≥ 1) (20)

with 0 < ρ ≤ 1. Values of ρ close to 1 yield slowly changing empirical measures of skewness

whereas smaller values yield more dynamic estimates. In practice, we propose to estimate ρ using

its MLE.

5.2 Use of covariates to model skewness

Constant and time varying covariates can also be included to model skewness and change in

skewness. If ψ3t denotes the logarithm of the resulting unconditional skewness possibly defined as

a function of covariates, then

log(ξ2
t ) = ψ3t + φ31

{
log

(
n>

t−1(ρ)
n<

t−1(ρ)

)
− ψ3,t−1

}
(21)

is a possible extension of the basic dynamic model defined above where ξ2
t is the conditional

skewness parameter. When the considered covariates are constant over time, Equation (21) can

be rewritten as

log(ξ2
t ) = (1− φ31)ψ30 + φ31 log

(
n>

t−1(ρ)
n<

t−1(ρ)

)

In that particular case, we see that φ31 weights the contribution of exogenous information (sum-

marized in ψ30) and empirical information on skewness. A small value for φ31 indicates that

covariates are more predictive of skewness at time t than its empirical conditional estimate.

5.3 General dynamic model for skewness

Using the same types of arguments as in the ARMA model, we could define a general dy-

namic model for skewness, GDMS(p3, q3), by replacing µt and yt in Equation (11) by log(ξ2
t )

and log
(

n>
t (ρ)

n<
t (ρ)

)
respectively, yielding

log(ξ2
t ) = ψ3t +

p3∑

i=1

φ3i

{
log

(
n>

t−i(ρ)
n<

t−i(ρ)

)
− ψ3,t−i

}
+

q3∑

j=1

θ3j

{
log

(
n>

t−j(ρ)
n<

t−j(ρ)

)
− log(ξ2

t−j)

}

This extension is suggested by the clear parallel that can be drawn between moving average models

for the conditional mean and Equation (21) where the roles of the conditional mean and innovation
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are played by log(ξ2
t ) and log

(
n>

t−1(ρ)

n<
t−1(ρ)

)
−ψ3,t−1 respectively. Although theoretically appealing, it

is likely that only very simple versions of that model will be relevant in practice.

6 Application

The analyzed dataset consists of 4313 observations of the DEM-USD exchange rate returns from

January 1980 till December 1996 (on a daily basis). Exchange rate returns have been analyzed by

multiple authors using mainly the normal and Student ARMA-GARCH model and normal finite

mixture models.

Recently, Beine, Laurent, and Lecourt (2002) show (using the same dataset) that fractional

differencing in the variance in combination with a day of the week effect and Student errors can

improve the fit. Here, we propose to analyze that long time series using the skewed Student (cf.

Section 2.2) and the skewed stable (cf. Section 2.4). Dynamics will be introduced in the location

and the dispersion parameters using the models of Section 4. A time varying skewness will also

be allowed using the GDMS model of Section 5.3. Whatever the considered distribution, both

likelihood ratio tests and information criterions select the AR(1)-APARCH(1,1) in the ARMA-

APARCH family of models.

As mentioned in Section 3.3, no asymmetry has been found in the conditional second moment,

i.e. τ1 = 0. The MLEs (standard errors or s.e.’s) of the parameters in the AR(1)-APARCH(1,1)-

GDMS(1,0) models for the above two families of distributions can be found in Table 1. The two

models in Table 1 have the same number of parameters. A better fit is obtained with the skewed

Student distribution with a minus log-likelihood of 4546.0 against 4556.0 for the skewed stable.

The location parameters for the skewed Student and the skewed stable distributions are very

similar. This is not surprising as, in both cases, we are dealing with the mode of the distribution.

The autoregressive parameter is negative for the two distributions, indicating that a positive

(negative) return tends to be followed by a negative (positive) on the next day. This is illustrated

in the first part of Figures 3 and 4 where the predicted (one-step ahead) mode γt is plotted for

the year 1987. Note that no difference can be visually detected when one superposes the skewed

Student and the skewed stable predictions for the mode. The dispersion parameters of the skewed

Student and of the skewed stable distributions are very similar. This is not surprising as they

measure the inverse curvature of their respective density at the mode. Note also that residuals to

the power 1.5 were chosen instead of the “traditional” squared residuals in GARCH models.

The second parts of Figures 3 and 4 give the predicted (one-step ahead) dispersion parameters

σt and δt (respectively) for the year 1987. We clearly see the influence of the October crash

around day 200 where a brutal (predicted) volatility surge is observed. Note that volatility was

even larger in the mid-January–February period. The unconditional skewness parameter log(ξ2)
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cannot be assumed to be zero as shown by ψ30 and its standard error. Thus, “on average”, there is

evidence for mild negative skewness. However, the significantly non zero values for φ31 and ρ show

that skewness is changing over time. We conclude that skewness alternates positive and negative

periods. The third, fourth and fifth parts of Figures 3 and 4 give the predicted (one-step ahead)

skewness parameter log(ξt), the corresponding (predictive) probability πt to be over the mode and

the predictive probability to have a positive return for the year 1987. Like for the dispersion, we

clearly see the influence of the October crash around day 200 which is followed by a period of

negative skewness. Note that it was preceded in early September by a (relatively) largely negative

predicted skewness. Apart from the mid-June–mid-August period, negative skewness was usually

expected, particularly in January.

Note that, here, the conclusions drawn from the fitted models are the same for the skewed

Student and the skewed stable distributions. This was confirmed by a plot of the predictive

densities for the year 1987. As nearly no difference was found out between the obtained plots for

the two considered distributions, we only reproduce the graph related to the skewed Student in

Figure 5. The solid line gives the predicted modes γt throughout 1987, while the dotted lines give

the predicted qth (with q ∈ {.99, .95, .75, 25, .05, .01}) quantiles (computed using the expressions

in Section 2.6) of the predictive skewed Student density gυ̂(yt|γ̂t, δ̂t, ξ̂t). We clearly see the large

uncertainty associated to the predictions in January-February and during the weeks following the

October crash.

7 Discussion

We have shown how the ARMA-APARCH model could be viewed as an explicit dynamic specifi-

cation of the conditional mean and of the conditional variance. These specifications were proposed

for the location and for the dispersion parameters of skewed distributions by considering yt and

z−1
0 ξ

−sign(yt−γt)
t |yt−γt| as the empirical counterparts of the mode and of the dispersion parameters

respectively.

Note that, as the skewed stable distribution has only moments of order less that α defined

(except in the normal distribution case α = 2 where moments of all orders are defined), it was not

possible to re-parameterize it in terms of the first two moments. However, it is possible to do so

with the skewed Student distribution and thus to consider the traditional ARMA-APARCH model

for the mean and for the variance directly for that distribution choice (this is however beyond the

scope of the paper). But, then, comparing the results provided by the re-parameterized skewed

Student and the skewed stable (for which no variance is available) distributions would have been

difficult. We have also proposed a general dynamic model for the skewness parameter. The

ARMA-APARCH-GDMS model was applied to the analysis of the DEM-USD exchange rates over
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the 1980-1996 period. We were able to show that periods of light and moderate (usually negative)

skewness alternate. The definition of log(ξ2) as the log-odds ratio of a return larger than the mode

was found very useful to interpret not only the sign but also the value of the predicted skewness

parameter. Thus, in addition to a risk measure as provided by the conditional variance, we are

now able to give a probability to the sign of that risk.

Reporting the fitted model by a plot of several conditional quantiles over the targeted period

was found very useful both to understand and to communicate the obtained results. It also puts

in context the difference in log-likelihood between the skewed Student and the skewed stable

based models. As mentioned earlier, no important difference was found between the plots of their

conditional quantiles. But note that the difference between these two distributions must be looked

for in the tails. These differences are expected as their Pareto indices are respectively estimated to

be υ = 7.19 and α = 1.87 with no overlapping asymptotic 95% confidence intervals (cf. estimate

± 1.96 s.e.). Virtually no difference was found between the plotted conditional quantiles for the

skewed Student (see Figure 5) and the skewed stable distributions, even for the 1% and 99%

quantiles. This is illustrated on the upper part of Figure 6 where the predictive probabilities to

observe a return larger than x (with x ∈ [0, 3]) on January 1st, 1987 under the fitted skewed

Student and the fitted skewed stable are plotted. These probabilities are nearly equal. But when

we compute the ratio of these probabilities (as shown on the lower part of Figure 6), we see that a

large positive return of 3% (say) is about 3.5 times more likely under the skewed stable than under

the skewed Student. However the upper part of the graph clearly shows that such a large return

is a rare event, even under the skewed stable distribution. Thus, we should be very careful when

inferring on the probabilities of extreme events as models yielding comparable fits can provide

(relatively) very different values for these (extremely small) probabilities.
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Figure 1: Skewness (measured by log ξ2) as a function of skewness and tail parameters β and α.
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Figure 2: Values of z0(α) for values of α in (1, 2).
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Figure 3: Predicted (one-step ahead) mode, dispersion and log skewness parameters for the

ARMA-APARCH-GDMS model for the skewed Student distribution in 1987.
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Figure 4: Predicted (one-step ahead) mode, dispersion and log skewness parameters for the

ARMA-APARCH-GDMS model for the skewed stable distribution in 1987.
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Figure 5: Predicted (one-step ahead) density for the 1987 returns using the ARMA-APARCH-

GDMS model with the skewed Student distribution. The solid line gives the predicted modes

while the dotted lines give the 0.99, 0.95, 0.75, 0.25, 0.05 and 0.01 quantiles.
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Figure 6: Graph 1: conditional probabilities to observe a return larger than x under the predictive

skewed Student (solid line) and predictive the skewed stable (dotted line) on January 1st, 1987.

Graph 2: ratio of the conditional probabilities to observe a return larger than x under the predictive

skewed Student (solid line) and the predictive skewed stable (dotted line) on the January 1st, 1987.
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Skewed Student Skewed stable

Location

ψ10 0.044 (0.009) 0.046 (0.010)

φ11 −0.071 (0.015) −0.069 (0.015)

Dispersion

ψ20 0.057 (0.130) 0.345 (0.103)

φ21 0.968 (0.008) 0.970 (0.007)

θ21 −0.893 (0.012) −0.893 (0.012)

ζ 1.480 (0.178) 1.519 (0.183)

Skewness

ρ 0.874 (0.061) 0.873 (0.056)

ψ30 −0.086 (0.022) −0.086 (0.022)

φ31 0.102 (0.044) 0.123 (0.047)

Tail

υ/α 7.19 (0.64) 1.87 (0.018)

Par. 10 10

− log(L) 4546.0 4556.0

Table 1: Estimates (standard errors) of the parameters in AR(1)-APARCH(1,1)-GDMS(1,0) mod-

els with skewed Student and skewed stable distributions.

γt = ψ10 + φ11 (yt−1 − ψ10)

δζ
t = ψ20 + φ21

{|dt−1|ζ − ψ20

}
+ θ21

{
|dt−1|ζ − δζ

t−1

}

n>
t = ρ n>

t−1 + I(yt > γt) ; n<
t = ρ n<

t−1 + I(yt < γt)

log(ξ2
t ) = ψ30 + φ31

{
log

(
n>

t−1(ρ)
n<

t−1(ρ)

)
− ψ30

}

τ1 = 0
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